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AFIT/GCA/ENV/10-M04 

Abstract 

 

 As military and other governmental budgets decline and impacted project 

deadline changes require instantaneous responses, cost analysts' tasks become more and 

more formidable.  Inaccurate estimates can lead to misappropriation of resources and can 

thus create delays in goods reaching warfighters.  This thesis aims to avail cost estimators 

of more reliable projection tools and to challenge the status quo of cost estimating, the 

production rate cost improvement model, when programs face reductions in lot 

quantities.  The findings reveal that the status quo proves efficient under many cost 

profiles, but clearly does not estimate as well when a program suffers lot quantity 

reduction coupled with loss of cost efficiency.  Prior research recognized the importance 

of changes in lot quantity to cost estimating, but definitive guidance never surfaced with 

regards to choosing a model.  Monte Carlo simulation allows us to vary cost-affecting 

variables and isolate conditions where the use of a fixed cost, cost improvement model 

provides more accurate estimates than does the status quo.  While no model for 

estimation should be discounted without exploration of its usefulness, we argue that the 

fixed cost model should be considered for use based on its ability to predict increases in 

average unit cost.   
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EVALUATION OF COST IMPROVEMENT MODELS WHEN PROGRAMS 

EXPERIENCE UNPLANNED PRODUCTION DECREASES 

 

 

I.  Introduction 

Background 

Cost analysts face formidable obstacles with every new project they encounter.  

The single most important responsibility of any cost analyst's job is to make sure the 

calculations and figures they present to project decision-makers are accurate estimates to 

the best of their abilities.  Regardless of exogenous factors weighing on cost analysts, 

they must sift through all information and develop logical conclusions firmly supported 

through a mixture of art and science. As military and other governmental budgets decline 

and project deadline changes require instantaneous responses, cost analysts' tasks become 

more and more difficult and are subjected to intense scrutiny as well as frequent 

criticism.  Such a climate dictates our assignment: to evaluate the imperfections in the 

systems, and from our findings, to hone reliable and effective solutions to replace the less 

accurate protocols in current use.  Complacency often stands in the way of providing the 

best possible estimates; relying on historical processes and estimating procedures can 

limit exposure to improvements in estimating techniques.  We must challenge the status 

quo whenever feasible.  Fortunately, technology aids us in our exploration of new 

innovative techniques.  Developing expertise with estimating software now fits in as part 

of our job description and is absolutely critical to accurate estimates.   

Inaccurate estimates create a large range of problems for program managers and 

other decision-makers.  Current and future budgets base resource allocation schemes on 
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program cost estimates.  Should the estimates be inaccurate, multiple programs face 

hardships; resources will realistically require reallocation and the overall financial 

situation will be constrained impacting current projects in addition to future endeavors.  

Furthermore, as decision-makers face funding issues, the real mission failure comes when 

the defense acquisition process cannot present the warfighter with products they expect 

and need.  We fear that Air Force cost analysts sometimes use incorrect models and 

create bad estimates, which generate inefficiency in the process.  Within this research 

work we are attempting to further perfect the overall cost analysis process and current 

system in use by the Air Force.  Our research goal is to provide cost analysts and 

decision-makers with a more in-depth analysis of cost improvement curve theory to apply 

to estimates.  

Purpose of This Study 

 Our study involves a very specific situation we cost analysts face.  In the current 

acquisition environment, budget cuts reduce the size of programs and the new cost 

estimates must adjust for the new fiscal constraints.  Breaking our study down to its 

simplest form yields this focus: given a specific cost improvement curve estimation 

scenario with two possible models, which model outperforms the other when predicting 

future production costs?  Research, much like real estimates, never turns out as 

uncomplicated as the above explanation, but that simplistic view, of necessity, frames our 

research. 

 More specifically, our research looks at lot production quantities that decrease 

from the agreed upon quantity after initial production begins.  We chose this situation 

because as budgets become more constrained, many programs lose funding and reduce 
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order quantities.  The reverse situation of increasing order quantities could theoretically 

happen to a program, but is unlikely in the current environment.  Given this scenario we 

aim to find the best possible adjustments to the original estimate in order to capture the 

effect on learning and production rate suffered.  “Conceptually, production rate should be 

expected to affect unit cost because of the impact of economies of scale” (Moses, 

1990:1).  These costs can include but are not limited to: quantity discounts received for 

ordering larger amounts of material; reduced ordering and processing costs; reduced 

shipping, receiving, and inspection costs on materials ordered; a greater use of facilities 

spreading overhead costs over output quantity; and also, the inverse of these costs 

(Moses, 1991:17-30).  These effects reach beyond the range of a simple cost 

improvement equation and call for the addition of a production rate variable.  We refer to 

these equations as „production rate‟ and „production rate adjustment‟ models.  Dr. David 

A. Lee, in his book The Cost Analyst’s Companion, presents the two equations we 

evaluate in our research (Lee, 1997:60-61). 

                                                             C(Q) = T1Q
b
(R/R0)

c
                                           (1.1) 

                                                           C(Q) = (F/R) + T1Q
b
                                          (1.2) 

Dr. Lee offers situations where each equation is most useful, but he also presents 

problems with each of the equations based on program specifics.  Dr. Lee explains that 

Equations 1.1 and 1.2 most aptly respond to the cost drivers given changes in production 

lot sizes. 

Cost analysts must estimate their respective programs with both science and art; 

we expect the evaluation of these two equations to be no different.  Resources available 

to analysts, including the Air Force Cost Analysis Handbook, do not outline exactly how 
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an estimate should be built.  The resources act very similar to a „guide‟ or template when 

developing an estimate.  We intend to take some of the guesswork out of developing a 

cost estimate with this research by revealing which equation performs better with 

decreasing production quantities.  While predicting future events cannot be 100% 

accurate, we can provide indicators showing analysts a better estimating framework.  

Research Questions 

 Given the above scenario, our two equations, and the analysis, we answer the 

following research questions: 

1. What is the current practiced method for rate adjustments when lot order 

quantities are changed from the manufacturing plant‟s designed buy quantity and 

is that method consistent across the field? 

2. What factors/inputs influence each of the specified cost improvement curve 

equations when lot quantities change? 

3. Which of these cost improvement models best estimates the impacts of changes in 

production buy quantities and what are the driving forces behind each of the 

estimates? 

General Approach 

 In order to answer the research questions mentioned above, we conducted an 

extensive literature review to uncover the progression of cost improvement curves, 

production rate adjustments, and the analysis of these models.  Based on the research, we 

performed a Monte Carlo analysis to evaluate each of the equations and to conclude 

which inputs to the production process influence the estimate.  We also use historic 
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program data to verify our findings and to better align our research to actual cost 

estimates.  Our cumulative findings allow us to draw conclusions about the application of 

each of the equations to a cost estimate, and hopefully to aide estimators in making more 

accurate estimates. 

 For the purpose of our study, we will be using the term „cost improvement curve‟ 

to describe the phenomenon often referred to as learning curve, production cost progress 

curve, cost-quantity curves, experience curves and cost-progress curves (Department, 

2007:8-1).  We chose this terminology because the term „cost improvement‟ encompasses 

factors beyond the standard concept of „learning.‟  While we understand the basic 

structure of cost improvement curves, there have been alterations to the original methods 

to account for many possible production situations.  Academics found the original cost 

improvement equations needed elaboration because many other factors can affect the 

amount of learning that takes place in a production.  Though in general practice the 

cumulative quantity is the main cost driver, and as quantity increases the unit cost 

decreases, other cost drivers are present.  In the case of production rate, there is an 

inverse relationship between production rate and unit cost.  As production rate increases, 

the plant should gain economies of scale and decrease unit cost (and the reverse situation 

should also hold true).   

Assumptions 

1.  We assume at the point of changing future lot sizes the product requirements remain 

constant throughout the rest of the programs life.  Our simulated data and our equation 

prediction error will be built upon the assumption of stable product requirements.  
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Requirements may change during production of an item, which would call for a new cost 

estimate based on the changing information.  We do not model that scenario because 

providing an encompassing range of possible requirement changes is not feasible. 

2.  Based on our research, the two equations that Dr. Lee presents best estimate cost 

improvement when a program suffers changes in production lot sizes.  Other research 

also led us to this conclusion, but there may be a need to explore new equations never 

presented.  We will not be measuring prediction accuracy of every cost improvement 

equation even though there may be specific conditions with our simulated and actual data 

where other models outperform our models.  We did identify the need to model two other 

cost improvement models found in the literature review, but the addition of these models 

does not exhaustively collect all possible cost improvement models and their predictive 

capabilities.  Across the spectrum of varying conditions within our scenario we assume 

our models will consistently outperform other models.   

Limitations 

1.  Our simulated data and actual data cannot cover every possible situation analysts may 

face.  We generalize our findings to real situations, but we cannot be certain that other 

factors outside the range of our study are driving cost.   Our simulated data represents a 

„normalized‟ data set where abnormalities have been removed.   

2.  Along the same lines as our first assumption, we cannot possibly research all 

exogenous factors affecting cost.  We limit ourselves to the most common cost drivers, 

but we understand other actual programs can face unique situations.  The burden falls on 

the program analyst to filter the program and decide what factors are truly driving cost, 

and if our research can be useful. 
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Chapter Summary 

 Chapter I provided an overview of our research and states the research questions 

we hope to answer through our results.  In Chapter II we review the history of cost 

improvement curves and the advancements researchers have made to understand and 

evaluate the effects of production rates.  Based upon the information provided in the 

literature review, we outline in Chapter III our methods for creating a robust Monte Carl 

simulation and evaluation of Equations 1.1 and 1.2.  Chapter IV will show the results and 

analysis of our Monte Carlo simulation and evaluation.  Finally, Chapter V will 

summarize the significant findings of our analysis and highlight potential policy 

implications to consider.   
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II.  Literature Review 

 We target two areas in the literature review: first, an overview of cost 

improvement curves to include production rate variations, and second, previous research 

performed on production rate variations.  Academics have produced extensive research 

on learning curve theory and application, but we will only focus on research that directly 

relates to the production rate variations.  Our literature review does not serve as a stand-

alone document on all variations to learning curve models; for a more in depth 

explanation of learning curves, readers should reference the many available publications. 

An Overview of Cost Improvement Curve Theory 

As previously mentioned, for the sake of continuity we will be using the term 

„cost improvement curve‟ instead of any of the other acceptable variations.  Though we 

often use the names interchangeably, there are subtle differences in the phrasing and 

meaning of each variation.  For example „learning‟ describes the efficiencies gained by 

laborers improving performance at producing an item in a repetitive process, while 

„production cost progress‟ explains the process of repetitive production where an increase 

in the total quantity produced may lower the unit cost of each item.  Any recurring (or 

variable) production costs, including labor, raw materials, and manufacturing costs of an 

individual item decrease as the total quantity of items produced increases (Department, 

2007:8-5).  The original forms of the learning curve model do not include fixed costs in 

the equation, but as we will discuss later, fixed costs can contribute to model accuracy 

under certain circumstances.  „Improvement‟ refers to the over-arching efficiencies that 

sometimes cannot be pinpointed but occur in a repetitive process (Department, 2007:8-2).  
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Each variation of the cost improvement curve involves an important aspect of production 

and our scenario encompasses many of these variables.   

 Cost improvement models serve as crucial tools for cost analysts across all fields.  

The aircraft industry first recognized the usefulness of cost improvement models, 

uncovering and utilizing the predictive value of modeling learning curves.  Cost analysts 

discovered that these models could be applied almost universally across production and 

thus, other industries soon followed in practice (Department, 2007:8-4).  Generalization 

of the learning concepts allows for use of the models in calculating expected labor hours, 

resources, and costs.  “In manufacturing, learning curve representations are used to plan 

manpower needs, set labor standards, establish sales prices, aid make/buy decisions, 

judge wage incentive payments, evaluate organizational efficiency, develop quantity 

sales discounts, analyze employee training programs, evaluate capital equipment 

proposals, predict future production unit costs, and create production delivery schedules” 

(Smith, 1989:1).  The application possibilities range across many different decision 

points within the acquisition process.  The Air Force utilizes cost improvement curve 

estimates across a range of systems and acquisitions to include airframes, modifications, 

common avionics acquired for multiple platforms, engines, missiles, and satellite 

hardware (Department, 2007:8-2).  Accurate estimation plays an important role for cost 

analysts and provides valuable perspective as they evaluate contractor proposals as well.  

The effects of misestimating can negatively affect the decision-making process; thus, the 

estimates must be as accurate as possible.   
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 The two most common versions of the cost improvement curve models are the 

cumulative average model developed by T.P. Wright, and the unit cost theory formulated 

by James R. Crawford and based on Wright‟s. 

The Cumulative Average Model 

 In 1936, aircraft researcher T.P. Wright became the father of learning curve 

theory when he created a model explaining learning-related reductions in airframe 

construction costs.  The basic premise effectively illustrated that when the number of 

aircraft produced in sequence doubled, the cumulative average direct labor input per 

aircraft decreased in a regular pattern.  His ratio relationship could be modeled 

exponentially, but also became a linear function when applied to the labor/cost changes 

that occurred over the sequence of production units (Department, 2007:8-4).  The linear 

function represented Wright‟s „learning curve slope‟. 

Wright‟s theory can be expressed mathematically as: 

                                               A(Q) = A1(Qc)
b
                                                       (2.1) 

where 

A(Q) = average cost to produce the first Q units 

    A1 = first unit cost (model parameter) 

    Qc = total quantity of units produced (whose average cost is to be computed) 

      b = slope coefficient (model parameter) = ln(slope)/ln(2) 

Equation 2.1‟s framework does not appear complex, but conceptually there are 

two essential elements that must be recognized and accepted.  First, the value of A1 is 

described as the „first unit cost‟ but is not the actual cost of the first unit of production.  

A1 is an estimated model parameter derived from historical values to fit the curve.  
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Second, the slope refers to the rate of learning, and represents the percentage by which 

reoccurring labor/cost decreased every time production quantity doubles.  “For example, 

for a slope of 80%, the value of labor/cost for every doubling of the quantity Q is 80% of 

the value for Q; equivalently, every time the production quantity doubles, the associated 

hours/cost improves at (is reduced by) a rate of 20%” (Department, 2007:8-6).   

 Figure 2.1 below depicts the above scenario of 80% slope, starting with a unit 1 

cumulative cost of $1,000.   

 

Figure 2.1: Wright Model Plotted on Arithmetic Grids 

 

The Unit Cost Model 

Following WWII, James R. Crawford updated Wright‟s model based on 

information from aircraft production during the war.  Very similarly to Wright, Crawford 

theorized that the cost per unit decreases by some constant percentage (ratio) as the total 
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number of units produced doubles.  Crawford found this model more useful for his 

applications.  

The mathematical expression of Crawford‟s model is identical to Wright‟s model 

though Crawford‟s definition of terms differs.   

C(Q) = T1Q
b
                                                       (2.2) 

where 

C(Q) = cost to produce the Q
th

 unit 

    T1 = first unit cost (model parameter) 

     Q = unit number (whose cost is to be computed) 

      b = slope coefficient (model parameter) = ln(slope)/ln(2) 

 

The subtle difference from Equation 2.1 is notable: in Equation 2.2 the dependent 

variable C(Q) is the cost of a specific unit, while in Equation 2.1 the cost is an average 

across all prior units.  These distinctions are reflected in the title description of each 

model.  Figure 2.2 below plots the unit cost curve with a learning slope of 80% and a unit 

1 cost of $1,000.  Figure 2.1 above looks identical to Figure 2.2; the only differences are 

the axes labels and the interpretations of the data.   
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Figure 2.2: Crawford Model Plotted on Arithmetic Grids 

Unit Versus Cumulative Average 

Whether one model outperforms the other model depends on the situation, and 

through mathematical manipulation each model can produce the other‟s results.  While 

the equations can be applied interchangeably for estimates, the form we choose must 

remain constant throughout the estimate for accuracy (Anderson, 2003).  For example, if 

the analyst begins the estimate with the unit cost model, he/she must complete all 

calculations using that chosen model and define the results in unit cost form.  If he/she 

wishes to explain cumulative average results, that application must be employed from the 

beginning, or else the final numbers must be changed through addition of each unit cost 

(Anderson, 2003).  Analysts must remain true to the use of their chosen cost 

improvement curves in order to create valid estimates.  These two models remain the 

most commonly applied models because of their simplicity and consistent performance.   
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When the two models are compared side by side they give the results seen in 

Table 2.1 and Figure 2.3. 

Table 2.1. Comparison of Cumulative Average and Unit Formulation (Shea, 1994:18) 

 Cum Avg Cost Formulation 

(Constant Year $’s) 

 Unit Cost Formulation 

(Constant Year $’s) 

 80% Slope   80% Slope  

Unit # Cum Avg Cost Unit Cost Unit # Cum Avg Cost Unit Cost 

1 1000 1000 1 1000 1000 

2 800 600 2 900 800 

3 702 506 3 834 702 

4 640 454 4 786 640 

5 596 418 5 748 596 

6 562 392 6 717 562 

7 534 371 7 691 534 

8 512 355 8 668 512 

9 493 341 9 649 493 

10 477 329 10 632 477 

 

 

 

Figure 2.3: Cum Avg. Theory and Unit Cost Theory Plotted By Incremental Unit Cost  

(Shea, 1994:20) 
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When looking at Figure 2.3, “the cumulative average cost declines by a constant 

percentage between double quantities; however, when converted to incremental unit 

costs, the percent decline is non-constant” (Shea, 1994:18).  The converse holds true for 

the unit cost theory, where the unit cost declines at a constant percentage and the 

cumulative average cost does not decline at a constant percentage.  In reality, creating the 

two models will show variance because the unit 1 cost will not be the same, but the 

information highlights the differences of the two equations.  Again, the important fact 

remains that cost analysts must remain consistent in the application of whichever 

equation form they choose to employ.   

Theoretically, both the cumulative average model and the unit cost model have 

validity.  The basic premise that a laborer‟s repetition of task over and over again will 

cause the laborer to become better at the task can be perceived in performance.  For 

example, an observer could theoretically stand next to the laborer with a stopwatch and 

could measure the changes in time taken to complete a repetitive process.  The efficiency 

of motion and task completion gained works both in theory and in practice.  As we look 

at variations to the two original models and eventually production rate adjustment 

models, the cumulative average model and the unit cost model still demonstrate validity, 

even though there is no feasible way to physically measure all of the inputs and outputs.    

Linear Transformation 

 Both the cumulative average model and the unit cost model are commonly 

expressed in log-linear form for statistical evaluation purposes.  When the exponential 

curves are transformed to their linear forms, they become more easily understood in 

presentation and practice.  The log-linear form is expressed as: 
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Log A(Q) = log A1 + b log Q                                            (2.3) 

When graphically represented, this equation illustrates the linear relationship between 

cost and learning that the original forms of the equation embody.  If we take a unit cost of 

$1,000 and a learning slope of 80% just as before, and plot the data on a logarithmic 

scale, the results are shown in Figure 2.4 below. 

 

 

Figure 2.4: Unit Cost Curve Plotted on Logarithmic Grids 

 

Figure 2.4 not only gives the same information as the arithmetic grid plots, but 

also can be used to better illustrate the relationship between learning slope and cost 

necessary for analysis of the equations statistically.   
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Variations to Original Models 

 The wide range of applications for cost improvement curve theory opens the door 

to variations that more aptly model specific situations.  Two equations are no longer 

sufficient to handle the nature of a product, manufacturing process, business 

environment, or countless other factors that reach beyond typical learning.  Because we 

do not have clear guidance on which equations to use, we must filter through all 

possibilities and make determinations based on program specifics and indicators.  Dr. 

Adedeji B. Badiru published an extensive compilation of „univariate‟ and „multivariate‟ 

learning curve models.  „Univariate‟ equations, exemplified by Equations 2.1 and 2.2, 

calculate projections using single input variables; „multivariate‟ equations utilize more 

than one input variable such as processes using Equations 1.1 and 1.2 in Chapter I.  

While these models are not the focus of our research, the principles driving their 

conception and application aid the understanding of learning curve theory and how such 

theory is applied.  Simply, Dr. Badiru concludes that there are underlying causes, often 

unseen and not directly traceable, that affect cost; these models aim to capture the cost 

changes when the programs exhibit certain symptoms.   

The classical developments based on the Wright and Crawford‟s original models 

include: 

- The S-Curve 

- The Stanford-B Model 

- DeJong‟s Learning Formula 

- Levy‟s adaptation formula 

- Glover‟s learning formula 

- Pagel‟s exponential function 

- Knecht‟s upturn model 

- Yelle‟s product model 

- Multiplicative Power Model 



www.manaraa.com

18 
 

 

Each of these adaptations to the model may outperform the original models given certain 

program specifics.  The cost analysts must investigate the specifics of their respective 

programs and accordingly apply the appropriate learning curve equations.  In the 

decision-making process, these equations can improve analysts‟ evaluations of the 

designs of training programs, the manufacturing economic analyses, the breakeven 

analyses, the make or buy decisions, the manpower scheduling, the production planning, 

the labor estimating, the budgeting, and the resource allocation (Badiru, 1991:439-440).  

Dr. Badiru also explains how analysts must choose between a „univariate‟ (a single input 

usually quantity) and a „multivariate‟ model for a cost estimate.  The choice rests on 

many factors related to the actual calculations as well as to the delivery of the 

information in an intelligible form to decision-makers.  Based on the amount of data and 

the time and statistical software available, the use of multivariate models might not be 

possible.  Univariate models can be applied competently with limited data, but these 

models may not be capturing all variables affecting cost.  Multivariate models require a 

better knowledge base of statistical data for starters, as well as expertise in the art form of 

presenting the information.  Sometimes a parsimonious solution proves to be more useful 

in the decision-making process as many non-analysts may prove unable to accurately 

comprehend complex models.  Since both of the models we evaluate in this research are 

multivariate production rate models, science and art alike must be utilized.  
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Cost Improvement Curve Production Rate 

 Expansion of the original cost improvement curve equations called for a term to 

explain and model effects when manufacturing production rates change throughout the 

production lifecycle.  Hoffmayer‟s 1974 hypothesis, in a report completed at RAND, 

proposed that as production rate increased, manufacturers should gain greater efficiency 

above only „learning‟, and that the resulting effect would be a decrease in unit cost 

(Hoffmayer, 1974:2).  Decreases in unit cost can be contributed to “greater specialization 

of labor, quantity discounts and efficiencies associated with raw materials purchases, and 

greater use of facilities permitting fixed overhead costs to be spread over a larger output” 

(Moses, 1991:2).  At the time of the Hoffmayer study, cost analysts did not fully 

understand the concept of production rate and how it affected cost improvement.  More 

recently, the Air Force Cost Analysis Handbook recognizes production rate‟s link to 

economies and diseconomies of scale as the production rate increases and decreases 

(Department, 2007:8-31). 

 Hoffmayer‟s study recognized the importance of production rate and the 

widespread utility an accurate tool to predict cost could provide cost analysts.   Karl 

Hoffmayer and the other RAND authors aimed to create an estimating model to capture 

the magnitude of costs and/or cost savings realized through changes in production rate 

(Hoffmayer, 1974:1).  To accomplish their goal, the RAND study authors focused on 

how production rate would affect four major cost elements: manufacturing labor, 

materials, tooling, and engineering (Hoffmayer, 1974:1).  Along with major cost 

elements, the RAND study focused on manufacturing overhead, which had previously 

been omitted from cost improvement (learning curve) equations.  Beginning with these 



www.manaraa.com

20 
 

five areas, the authors hypothesized that they could find other exogenous factors, outside 

of the program‟s control, that altered unit cost with production rate.   

 Hoffmayer‟s study determined the causes of changes in production rate to be 

design problems, cost growth, funding problems, modifications, and other similar factors.  

These same causes are prevalent throughout the current acquisition process and have 

directly led to the scenario we are studying, as well as to the two production rate 

adjustment equations we are evaluating.  The unresolved cost-related problems within 

acquisition programs include: the way in which rate changes were and are achieved; the 

availability of suppliers; the local labor supply; management policy; the timing of rate 

changes; plant capacity; plant backlog; and a number of other transitory factors 

(Hoffmayer, 1974:41).  These elements drastically changed the major cost components 

and overhead allocation.  Hoffmayer concluded that while he and the other authors could 

understand the concepts involved in production rate changes, they were unable to create a 

useful model fit for all scenarios (Hoffmayer, 1974:41).  The most important finding of 

Hoffmayer‟s study related to the relationship between production rate changes and 

overhead. 

 Hoffmayer and the authors of the RAND study looked at major acquisition 

programs and concluded the one cost element that is clearly a function of production rate 

is overhead.  The effect presented itself clearly through the RAND study; because 

overheard costs could reach upwards of 50% of total cost, even minute changes could 

appear significant.  The RAND study finally concluded that, “When the total volume of 

business is very low, cost can be quite sensitive to [production] rate.  When total volume 

is high, the influence of rate is reduced but still perceptible” (Hoffmayer, 1974:43).  Even 
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following conclusion of their study, the authors found themselves unable to predict the 

production rate changes with confidence, and thus they could not fully estimate cost with 

any degree of certainty.  The RAND study did frame the idea of production rate changes 

and led to further investigation and statistical analysis to create a useable estimating 

model.  The Equations 1.1 and 1.2 we are evaluating in our study are based on the same 

concept found in the RAND study. 

Production Rate Model 

 Production rate models evolved based on the principles described above.  Many 

cost estimating handbooks now include sections describing production rates and the 

effects they will bear on cost estimates.  The Air Force Cost Analysis Handbook presents 

the most common cost improvement model with a production rate term (Department, 

2007:8-31).  Equation 2.4 shows the production rate model. 

 

C(Q) = T1Q
b
 R

c
                                                          (2.4) 

where 

C(Q) = cost to produce the Q
th

 unit 

    T1 = first unit cost (model parameter) 

   Q = unit number (whose cost is to be computed) 

    b = slope coefficient (model parameter) = ln(slope)/ln(2) 

   R = production rate (number of units produced in a production period) 

    c = rate coefficient (model parameter) = ln(slope)/ln(2) 
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Given production rate changes, Equation 2.4 outperforms the basic learning curve 

model (Moses, 1990:30).  The problem rests in determining which independent variables 

drive the effectiveness of the equation and subsequently allow analysts to predict the 

equation‟s usefulness.  “Conceptually, production rate should be expected to affect unit 

cost because of the impact of economies of scale.  Higher production rates may lead to 

several related effects: greater specialization of labor, quantity discounts and efficiencies 

associated with raw materials purchases, and greater use of facilities permitting fixed 

overhead costs to be spread over a larger output quantity”  (Moses, 1990:1-2).  Adding a 

production rate term to the cost improvement model also creates clear disadvantages.  

Finding a clear production rate/rate slope to use in the model is the first disadvantage of 

the production rate model.  This problem can be minimized and possibly resolved 

through statistical analysis.  A second disadvantage occurs if the production rate is 

constantly increasing or decreasing.  This situation causes high co-linearity between the 

unit and rate variables.  No clear solution for this problem can be found, so analysts must 

work the individual problems according to the specifics of their data set and program.  

The limit on reductions or gains in production is viewed as another disadvantage to the 

production rate model.  Once a plant reaches either minimum or maximum capacity, 

large expenditures will take place: overtime, expedited material orders, purchase of new 

capital, hiring more of the labor force, and increased training (Lee, 1997:60).  Due to 

these inadequacies, some cost analysts may find themselves hesitant to utilize the 

production rate model.  
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Evaluation of the Production Rate Model 

 In a report completed at the Naval Postgraduate School in 1990, O. Douglas 

Moses evaluated the Production Rate Model.  The report, Learning Curve and Rate 

Adjustment Models: Comparative Prediction Accuracy Under Varying Conditions, 

compared the original unit cost Model (Equation 2.2) developed by Crawford and the 

production rate model (Equation 2.4) to find out, simply, which equation performs better.  

Based on available research, Moses hypothesized that a clear relationship existed 

between cost and production rate, but since the relationship would vary, neither equation 

outperformed the other outright (Moses, 1990:3).  Unable to rely on prior research and 

practical application because he could not verify the proper application of the production 

rates used, Moses created simulated data to evaluate the equations.   

 

Table 2.2. Moses’ (1990) Independent Variable Values For Data Simulation (Moses, 1990:13) 

Variable Levels/Values 

Data History 4 7 10 

Variable Cost Learning Rate 75% 85% 95% 

Fixed Cost Burden 15% 33% 50% 

Production Rate Trend Level  Growth 

Production Rate 

Instability/Variance 

.05 .15 .25 

Cost Noise/Variance .05 .15 .25 

Future Production Level Low  Same High 
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 Moses derived a generic cost function to create his simulated data, but only solved 

the cost function for a set number of discrete values as seen in Table 2.2 above.  True cost 

functions do not exist in the manufacturing process.  If manufacturers knew their exact 

cost function, then analysts would not need to develop their own equations.  As a result, 

Moses derived his equation from cost components.  Moses‟ equation allowed him to 

inject various independent variables into the equation at different levels to create 

simulated cost data.  Using the simulated cost data, Moses assessed each model 

individually and measured the error in predicting the future lot costs (also created with 

the cost function).  The strength of Moses‟ generic cost function and independent 

variables validates the research and his findings.  We label his cost simulation function 

Equation 2.5 and provide the definition of terms below. 

C(Q) = VC1(Q
d
) + SFC (PR

-1
)                                           (2.5) 

where  

C(Q) = unit cost 

   VC = variable cost per unit (learning included) 

 SFC = standard fixed cost per unit 

     Q = cumulative quantity 

      d = parameter, the learning index (same as learning slope) 

   PR = production rate for any period 

 

The above cost function encompasses the independent variables Moses uses to 

explore the cost drivers of each equation.  His independent variables included data 

history, variable cost learning rate, fixed cost burden, production rate trend, production 
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rate instability/variance, cost noise/variance, and future production level (Moses, 

1990:13).  Moses chose these variables because they most resemble variables analysts 

could flag in their programs as indicators identifying which cost improvement curve to 

apply.   

 Moses did not find overwhelming evidence demonstrating that either tested 

equation outperforms the other across the entire range of scenarios.  Rather, Moses found 

that under certain conditions each equation estimates production rate superiorly to the 

other.  Moses discovered that the following general tendencies led to reduction in the 

incidence of prediction errors and to improved accuracy for the production rate equation: 

-  The number of observations available for the analysis was relatively high 

-  The amount of fixed cost in total cost was relatively high 

-  The production rate trend had been growing during the model estimation period 

-  The period-to-period variability in production rate was relatively large 

-  Random noise in cost due to unsystematic factors impacting cost was relatively low 

-  Production volume was expected to be cutback in the future periods for which cost      

predictions were being made (Moses, 1990:29). 

 

Moses also recognized, “The greatest impact (of changes in the various factors) 

on relative prediction accuracy (of the learning curve approach and the rate adjustment 

approach) occurs when cutbacks in future production are anticipated” (Moses, 1990:30).  

Based on this finding, the most crucial model selection decisions present themselves in a 

program where future production volume is declining (Moses, 1990:30).  Our research 

deals directly with the above situation.  We must acknowledge that Moses was aware of 

the impact decreases in production rates can have on cost estimates.    

By astutely analyzing the interactions of independent variables, Moses‟ research 

also discovered that the factors on the relative prediction tend to be additive.  The 

analysis did not reveal significant scenarios where the basic learning curve function 
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outperformed the production rate model.  The Crawford model did outperform the 

production rate model, but not consistently nor convincingly.  Because Moses created 

simulated data at discrete values and tested the models against that data, there is no way 

to know if his findings can be generalized outside of that specific dataset.  Our research 

fills this void by using both Monte Carlo simulation to create an inclusive range of 

possible scenarios and historical program data to evaluate the production rate adjustment 

equations.   

Including Fixed Costs in Cost Improvement Curves 

 The longstanding mindset of „learning curve‟ models states that the models can be 

applied only to recurring costs.  As learning curves evolve into to cost improvement 

curves, this rule reflects that change.  Based on the above research done by Hoffmayer 

and Moses, large fixed costs factored as a proportion of total cost can drastically skew the 

results of the original cost improvement models (Equations 2.1 & 2.2).  Inclusion of a 

fixed cost variable yields the following fixed cost model, which we labeled Equation 1.2: 

C(Q) = (F/R) + T1Q
b 

                                                (1.2) 

where 

C(Q) = cost to produce the Q
th

 unit 

    T1 = first unit cost (model parameter) 

     Q = unit number (whose cost is to be computed) 

      b = slope coefficient (model parameter) = ln(slope)/ln(2) 

     R = rate of production (quantity per time period or lot) 

     F = fixed cost per lot (model parameter) 
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Conceptually logical, the fixed cost equation opens the door for experimentation 

to see if the equation creates valid estimates.  Our research plans to highlight the 

estimating capabilities of Equation 1.2 and lobby that the equation should become more 

widely accepted. 

Dr. David Lee’s Cost Improvement Models 

 Dr. Lee presents Equation 1.1, which we refer to as the production rate 

adjustment model, and which can be seen below with a description of variables. 

C(Q) = T1Q
b
(R/R0)

c
                                                 (1.1) 

where 

C(Q) = cost to produce the Q
th

 unit 

    T1 = first unit cost (model parameter) 

     Q = unit number (whose cost is to be computed) 

      b = slope coefficient (model parameter) = ln(slope)/ln(2) 

     R = current production rate (number of units produced in a production period) 

   R0 = planned production rate (production rate prior to production rate decrease) 

     c = rate coefficient (model parameter) = ln(slope)/ln(2) 

 

In The Cost Analyst’s Companion, Dr. Lee mathematically derives the equations 

from Chapter I we re-named Equations 1.1 & 2.1.  These two equations are the basis for 

our research.  Dr. Lee presents two theoretical situations where his two equations should 

be applied and will outperform any other variations of the cost improvement curve.  

Equation 1.1 (C(Q) = T1Q
b
(R/R0)

c
) should be applied when, “Factors of production can 

change with rate, to keep the facility operating at its designed rate” (Lee, 1997:60).  Dr. 
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Lee states that this might only be possible if production has not yet begun and the 

manufacturer has not yet constructed the plant (Lee, 1997:60).  Equation 1.2 (C(Q) = 

(F/R) + T1Q
b
) should be applied when such things as factory floor space, specialized 

machinery, and tooling cannot be easily changed without cost (Lee, 1997:61).  Dr. Lee 

concludes that the fixed cost equation (Equation 1.2) is more practical than Equation 1.1 

for actual programs facing changes in production rate.  Dr. Lee applies Equation 1.1 and 

Equation 1.2 each to one set of data, but does not fully evaluate them.  His book serves 

more as a compilation of theoretical possibilities rather than an evaluation of methods.  

Our research will focus on the evaluation of these two equations.  

Grouped together, Hoffmayer‟s report (1974), Moses‟ report (1990), and Dr. 

Lee‟s book (1997) explain the responsiveness of production rate equations to the major 

cost drivers.   Most importantly, the reports explained how the production rate adjustment 

models more aptly respond to reductions in production lot quantities.  The results 

mentioned above drove the need for our research and helped us to limit and define the 

number of equations we need to evaluate.   

Chapter Summary 

 This chapter provided an extensive review of cost improvement models.  Wright 

and Crawford developed the cumulative average model and unit cost model, respectively, 

to explain the concept of learning.  Learning describes the efficiencies that are gained as a 

task is executed repeatedly.  The laborers become better at completing the tasks and the 

unit cost of an item decreases as more units are produced.  These two models became 

widely accepted across many disciplines because of their predictive capabilities and 

parsimonious constructions.  The first models developed by Wright and Crawford 
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provided the concepts of learning, but did not capture nor incorporate all aspects of 

production costs.  

 Later models built upon the concept of learning to thus include improvements in 

overall production.  The improvements explain more than the work done by a single 

laborer; they capture efficiencies for the entire production plant as a unit.  The uniqueness 

of products and production plants provided impetus for expansion of the original models, 

and resultantly many different models surfaced.  In 1974, Hoffmayer discovered the need 

to model the effects of production rate (lot quantity) changes on cost improvement.  The 

production rate model attempted to model the findings of Hoffmayer‟s work and model 

the economies and diseconomies of scale in production.   

 Moses evaluated the production rate equation and determined that under certain 

circumstances the model outperforms the unit cost model (Crawford‟s model).  Further 

research into the hidden costs of production discovered a conceivable need to include 

fixed costs in the cost improvement model.  Dr. Lee recognized the need for a fixed cost 

variable, as well as for a slight modification of the production rate model to capture the 

costs when a program suffers changing lot quantities.  In Chapter III, we will build on the 

work presented in Chapter II to evaluate equations 1.1 and 1.2.  Subsequent chapters will 

explain our results and explore the possible implications of our research.   

 

 

 

 

 



www.manaraa.com

30 
 

III.  Methodology 

 Previous chapters discussed the need for accurate cost estimates and the academic 

progression of cost improvement models.  Through our methodology we aim to discover 

which cost improvement model should be employed in cost estimates with decreasing lot 

sizes.  The works detailed in Chapter II provide much of the structure of our Monte Carlo 

simulation, our model creation, and our analysis.  Moses provides independent variables 

affecting cost, which can be evaluated in conjunction with the cost estimates to determine 

the variable‟s effect, if any, on the estimates. (Moses, 1990:13).  O. Douglas Moses 

identifies the predictive ability of the Crawford unit cost model and production rate 

model, while Dr. David Lee explains the two cost improvement equations (Equations 1.1 

and 1.2) he determines to have the most predictive ability when evaluating decreases in 

lot quantities. (Lee, 1997:60-61).  We are focusing our evaluation on these two equations. 

To accomplish our evaluation, we utilize Microsoft Excel with a Visual Basic for 

Applications (VBA) Macro to create the simulated cost data under varying assumptions, 

and the Microsoft Excel Premium Solver Platform add-in to optimize each model.  While 

Moses recognized that his cost data simulation limited the usefulness of the research, we 

intend to demonstrate how the reasonable, yet exhaustive, assumptions of our simulations 

strengthen our research. (Moses, 1990:30).  Microsoft Excel affords us the opportunity to 

provide a more robust Monte Carlo simulation; thus we have the responsibility to provide 

an extensive simulation.  As more advanced tools become available to analysts, the 

improved technology furnishes the ability to challenge the status quo of cost estimation, 

our goal with this research effort.   
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Basic Evaluation Structure 

 The basic structure of our evaluation method can be seen in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Basic Evaluation Structure Flowchart 
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Our evaluation structure is simple and easy to follow.  Following this flow chart 

allows us to preserve the same structure as we repeat the process under different 

simulation assumptions.  Even though we assembled a simple structure, Microsoft Excel 

allows us to evaluate the cost improvement equations under complicated assumptions.  

Our methodology focuses on creating many possible cost profiles and comparing each of 

the cost improvement models on their predictive capability with the same cost data.   

The Cost Generating Functions 

 Our cost generating functions mimic similar patterns in historical data.  We model 

samples from our simulated production costs against the basic learning curve shown in 

Chapter II as well as historical costs to ensure similarities.  Creating a cost function 

requires some guesswork because if producers knew their true cost generating functions, 

then the need for analysts would not exist (Moses, 1990:8).  We must do our best to 

recreate patterns because we do not know true cost functions for each individual 

situation.  The basic production cost structure of any particular item consists of a fixed-

cost portion and a variable-cost portion.  As mentioned in Chapter II, fixed costs did not 

originally factor into cost improvement models, but as research grew, analysts 

acknowledged fixed cost influence on cost improvement models.  We used two different 

cost generating functions.  We determined the need for two cost generating functions to 

avoid favoring either equation thus biasing the analytical process, and the necessity to 

create different cost scenarios in order to provide a thorough analysis.  We sampled 

construction from the cost improvement research accomplished by Avinger (1987), 

Moses (1990), and Thomas (1975) to determine our cost functions.  The two cost 

functions are simulated and modeled separately; the simulation results for each cost 
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function will be discussed in Chapter IV of our research.  To account for the inherent 

fixed cost in every unit, the first cost generating function contains a fixed cost portion: 

UC = VC1Q
b
 + (FC/R) + ε                                           (3.1) 

where 

  UC = unit cost 

VC1 = variable cost of the first unit of production 

    Q = unit number (cumulative over production life) 

     b = variable cost learning rate = log(learning slope)/log(2) 

  FC = fixed cost for the production period, which is the same for every 

production period 

    R = production rate/lot quantity 

     ε = error term 

 

Adding a learning rate to the equations validates the influence of the actual learning that 

occurs through repetitive production.  We assume there are no breaks in production 

affecting the learning rate, such that each production period maintains the same learning 

rate in a continuous calculation.  We chose to keep the fixed costs for each lot equal to 

capture the contractual obligations of the manufacturers and to acknowledge their 

inability to change fixed costs as production rates vary.  The producers are tied to 

manufacturing plant size, labor training costs, administrative costs, raw materials orders, 

and other fixed costs that cannot be avoided.  Normally, as production increases, 

manufacturers can capitalize on quantity discounts and thus spread fixed costs over more 

units.  When the production rate suffers an unanticipated decrease, the short run fixed 
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costs cannot be modified.  These large fixed costs can only be spread across the smaller 

number of units, meaning that each unit bears a larger portion of the fixed cost.  The 

fixed cost represents the economies or diseconomies of scale within a production cycle. 

 Because the fixed cost, cost improvement equation favors Equation 3.1 through 

the fixed cost variable, we also created a more generic cost function.  The second cost-

generating function excludes a fixed cost variable.   

UC = VC1Q
b
 + ε                                                  (3.2) 

where 

  UC = unit cost 

VC1 = variable cost of the first unit of production 

    Q = unit number (cumulative over production life) 

     b = variable cost learning rate = log(learning slope)/log(2) 

     ε = error term 

 

Equation 3.2 does not include the fixed cost variable; because the learning rate can only 

reduce the unit cost to a certain level, a stable cost per unit that cannot be eliminated 

exists.  Equation 3.2 is identical to the original learning curve equations developed by 

Crawford.  This equation captures the fundamental aspects of producing a good and 

allows us to vary our independent variables to create unique cost profiles.  

Independent Variables 

 Multiple independent variables affect cost.  Monte Carlo simulation allows us to 

vary multiple independent variables simultaneously to build cost profiles.  The 

independent variables work within the boundaries of the cost generating functions to 
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mimic historical costs and to truly test our cost improvement models.  We chose the 

independent variables to be inserted for analysis into our equations: number of lots, lot 

quantity, cumulative quantity, unit one cost, variable cost learning rate, fixed cost burden, 

production rate decrease, and noise.  In the following subsections we provide 

explanations for each of these variables and explain how we created our simulations.  

Through utilization of independent variables, we discover statistical patterns and 

indications of reliable forecasting.  Following the variable descriptions, Table 3.1 shows 

the distributions and parameters for each variable in the Monte Carlo simulation for each 

cost-generating function.    

Number of Production Lots (History) 

 Number of production lots refers to how many production lots will be used as 

"historical" data.  With lower numbers of production lots, fewer observations are 

available for modeling possibly affecting how the two cost improvement models perform.  

It is possible that a given cost improvement model estimates extremely effectively with 

more data points, but drastically underperforms when a significantly smaller number of 

data points are available.  Models could also be affected by the amount of historical data, 

thereby overestimating or underestimating consistently based on a certain amount of data 

history tainting the models' accuracy and validity. 

 Our Monte Carlo simulation uses uniform discrete distribution ranging from three 

production lots to ten production lots.  The uniform distribution assigns equal 

probabilities to each value within that range and randomly assigns an integer value.  

Based on previous academic research, we chose these values because they represent the 

typical amount of data available for cost improvement modeling.  Values below three do 
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not provide enough data for cost analysts to model, and values above ten do not typically 

occur because production does not usually span over ten periods.  Our range parallels the 

minimum and maximum values of Moses‟ research, but he did not account for all values 

within that range as we do (Moses: 13). 

 Lot Quantity 

 The historical lot quantities represent full rate production levels.  We do not 

model ramped up production because the specific situations we address occur during the 

later life of individual programs.  Also, in the early stages of a program, a producer 

prototypes products and refines the manufacturing process as needed; we do not want to 

account for the adjustments made before production stabilizes.  The simulation adds 

variations to each production period because production levels are commonly unstable 

from period to period.   

 Lot 1 quantities range from a starting value of 15 to an upper ceiling of 60.  The 

integer values within this range are uniformly distributed, which again means that each 

value holds an equal probability of occurrence through random generation.  The range 

accounts for the need to model programs with high productivity as well as programs with 

lower product output.  Our range is somewhat arbitrary demonstrating potentially 

extreme maximum and minimum values, but it is arguably representative of possible 

scenarios, thus offering a truer test of our estimation models.   

 Each subsequent lot uses the previous lot quantity and a triangular distribution 

with that value as the mode (center) value.  This ensures that each production run builds 

on information within that scenario.  Lot quantities are critical to data simulation but are 
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not used during analysis.  The lot quantity data is summed to produce the cumulative 

quantity, which can be analyzed against the cost improvement model. 

 Cumulative Quantity 

 Measuring cumulative quantity of the production line allows us to observe how 

the equations behave with different program sizes.  We aim to uncover any pattern or 

statistical significance associated with the models and the models' abilities to predict 

based on program size.  The cumulative quantity builds from the number of lots and the 

lot quantity data.   

Unit One Cost (UC1) 

 The cost of the first unit of production represents how much of the total cost of 

the first unit of production can be attributed to variable cost and is inherently affected by 

predictable learning on the production line.  The first unit cost determines the starting 

point for subsequent cost calculations of learning rate and fixed cost burden.  Fixed cost 

is added as a percentage of total cost and is not affected by learning.  To capture all 

relevant cost structures we created an extensive range of simulated values. 

 We simulated the first unit variable cost through a uniform continuous 

distribution between 10,000 and 1,000,000 dollars.  The value can be interpreted as 

thousands of dollars to more accurately relate to the flyaway cost of an airframe, but this 

inclusion does not change the analysis.  Every value within that range has an equal 

probability of becoming the first unit cost as we process individual iterations of our 

simulation.  We wanted ensure with certainty that we tested the predictive ability of the 

two cost improvement models over a range of large and small values.  The smaller values 

represent low cost items while the large cost items depict major manufacturing items 
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and/or total production.  Though we cannot model every value within that range, we 

succeed in creating a mixture of values representative of varying cost profiles.  The 

simulation applies a learning rate to each of these cost profiles to create values over a 

period of time. 

Variable Cost Learning Rate (LR) 

 Learning Rate describes the actual amount of learning taking place on the 

production line.  As laborers repeat the same processes over a certain time period, the 

laborers achieve more efficiency and complete the same amount of work in a lesser 

amount of time than when they initiated the production process.  Due to the progressive 

manufacturing efficiency, the unit variable cost will decrease by a constant percentage as 

the number of units produced doubles.  The variable cost learning rate is the same as the 

learning rate described in Chapter II, and further examples can be read in Chapter II of 

this research.   

 We first chose to use a triangular distribution to model the learning rate with the 

minimum expected value set as 75 percent learning, the maximum value set as 95 percent 

learning, and the most likely learning rate as 80 percent.  The values are based on similar 

academic research evaluating cost improvement models (Moses, 1990:8; Avinger, 

1987:18).  Choosing a triangular distribution allows us to restrict learning rates to values 

between 75 percent and 95 percent while acknowledging that those minimum and 

maximum values have a low probability of occurrence.   A normal distribution will 

model similar principles, but will also allow for the occurrence of extremely high and low 

values not consistent with actual production.  For example, if the value of 100 percent 

learning is randomly selected through a normal distribution, then zero learning will occur 
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throughout the life-cycle of that production line.  Only under the most rare of 

circumstances will this situation exist and throughout multiple production lots it is 

unlikely the situation will remain consistent.    

Based upon the input from our in-person conversations with Mr. Ken Birkofer 

and Mr. Doug Mangen, cost analysts with the F-22 Program, we constructed multiple 

scenarios for the learning rate.  In their experience, the learning rate for larger production 

scenarios stays between 85 percent and 95 percent, while assembly line production is 

usually 75 percent to 85 percent.  Our first distribution spans over the entire range, but we 

also use distributions to model the two other levels independently.  By limiting the 

learning rates to these values, we can detect if the different levels affect the predictive 

abilities of Equations 1.1 and 1.2.  As mentioned previously, variable costs are the only 

costs affected by learning, but variable costs are not the only costs composing the cost 

structure of a unit and an entire production period.  Fixed costs play a role in determining 

the cost of future lots. 

 Fixed Cost Burden (FC) 

 Fixed cost burden represents the percentage of total cost not affected by learning 

and held constant throughout all production periods.  With higher production rates the 

production plant gains efficiencies and fixed costs can be distributed across more units to 

lower the cost per unit.  When a plant experiences lower production rates, the fixed costs 

become a higher percentage of unit costs and efficiencies are lost.  In our specific 

situation, the unanticipated production decreases do not give the manufacturer the 

opportunity to change the already established fixed cost structure.  The manufacturer 

cannot sell a portion of the manufacturing plant, cut contractual agreements for supply 
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purchases, reduce storage space, un-train laborers, nor reduce fixed costs in any other 

way.   

 We assigned discrete, equal distribution to fixed cost burdens of 10 percent, 20 

percent, and 30 percent.  The simulation uses the variable costs of the first production lot 

to create a total cost profile where one of these values is used to represent the fixed cost 

of the lot.  The value calculated from the first lot becomes a consistent fixed cost for each 

production period, where the amount assigned to each unit depends on the production 

rate.  The proposed cost improvement models claim that there are hidden costs inherent 

to production that cannot be avoided and that need to be modeled in the cost 

improvement model.  The fixed cost burden provides a value that is consistent throughout 

production lots, that can be affected by the production rate, and that should be captured 

by the cost improvement models.  For the future production lot that will be estimated, the 

fixed cost becomes crucial as the production period suffers decreases in production.  The 

production rate decrease determines how many units will bear the burden of the fixed 

cost. 

 Production Rate Decrease for the Estimate Lot (PR) 

 The main goal of our research is to demonstrate how the unanticipated cut in 

production levels will affect the cost improvement model‟s ability to forecast.  Thus, the 

future production lot that needs to be estimated will display a production decrease 

affecting actual cost.  Production decreases represent any program changes whether need-

based or funding-based that can lead to fewer units being required and therefore produced 

than were previously anticipated and projected.  Because our simulated data does not 
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belong to a program with a history of projected production lot sizes, the final historical 

lot size serves as the future production level experiencing a decrease.   

 Our Monte Carlo simulation represents production rate decreases with a discrete, 

equal distribution of the values 25 percent, 50 percent, and 75 percent.  For example, if 

the final historical production level is 100 units and suffers a 25 percent production rate 

decrease, then the future production rate will be 75 units.  There is no pattern for the 

amount of decrease programs will face.  The amount of decrease depends on the 

economic and social climate of the time and on the nature of the program.  By choosing 

these values we can simulate low, medium, and high production decreases and thereby 

measure how the cost improvement models predict future costs.  The cost information for 

future production lots is simulated simultaneously with the historical production lots so 

the model estimations can be evaluated against „true‟ costs.   

 Noise 

 Noise represents the unpredictable natures of production situations and estimating 

costs.  Adding the noise variable presents the best option to account for the unknown 

events of a production run.  Noise represents any unforeseen and even unknown events 

that occur at any time during production.   

 We create noise based on the following function: 

Noise = UC * e                                                     (3.3) 

where 

UC = unit cost for that particular unit 

    e = randomly generated percentage based on our distribution 
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Noise affects each unit cost calculation, and in our simulation noise can be any 

value between -0.05 percent and 15.0 percent of that unit cost.  The values are 

represented by uniform continuous distribution where every value has an equal 

probability of occurrence through random number generation.  Though normal 

production cycles may not fit this noise distribution where a value of 15.0 percent 

appears as often as a value closer to zero, we aim to generate a high number of 

possibilities to observe how each of the models reacts.  This range offers a sample with 

more extreme values to observe, while also providing lower, more conservative, values 

for evaluation.  We did not limit ourselves to one possible distribution of noise; we also 

simulated a normal distribution with a mean of zero and a standard deviation of 7.5 

percent.  By using different distributions we can see if and how noise affects the 

predictive abilities of the equations.   

Table of Simulated Values 

Table 3.1 only shows the first set of assumptions; we modeled assumptions for 

learning rate and noise at different levels to explore any changes in the results. 
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Table 3.1. Independent Variable Descriptions for Monte Carlo Simulation (1
st
 Set) 

Independent Variable Distribution Range 

Number of Production Lots Uniform Distribution Min: 3 Lots 

Max: 10 Lots 

Lot Quantity Lot 1: Uniform 

Distribution 

Other Lots: Triangular 

Distribution 

Lot 1 Min: 15 Units 

Lot 1 Max: 60 Units 

Other Lots Mode: Previous 

Lot‟s Number of Units 

Other Lots Min: Mode – 5 

Other Lots Max: Mode +5 

Cumulative Quantity No Distribution Summation of Lot 

Quantities 

Unit One Cost Uniform Distribution Min: $10,000 

Max: $1,000,000 

Variable Cost Learning 

Rate 

Triangular Distribution Min: 75.0% 

Mode: 85.0% 

Max: 95.0% 

Fixed Cost Burden Discrete Distribution Possible Outcomes: 

10.0%, 20.0%, 30.0%, and 

40% of Total Cost 

Production Rate Decrease Discrete Distribution Possible Outcomes: 25%, 

50% and 75% Decreases 

Noise Uniform Distribution Min: -5.0% 

Max: 15.0% 

 

Monte Carlo Simulation and Model Creation 

 Monte Carlo simulation provides us with the ability to model thousands of 

different cost profiles and then to evaluate the results.  Through random number 

generation within the distribution guidelines for each variable previously mentioned, we 

create costs that exhibit similar patterns to historical production costs.   

We use Microsoft Excel Visual Basic for Applications and Premium Solver 

Platform from Frontline Systems to create a workbook that allows us to create historical 

production costs, to model the parameters of each cost improvement equation, to use the 

model parameters to estimate the next production lot, to simulate the cost of the next 
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production lot, to measure the prediction errors, and to store simulation and model 

information.   

Visual Basic for Applications (VBA) 

The code creates a program that runs on the command of the user.  Based on the 

structured Microsoft Excel worksheets, the VBA code creates all of our essential data for 

more accurate evaluation of the cost improvement models.  The code runs the simulation, 

stores snapshots of the simulated conditions (levels for independent variables), runs 

Solver to find model parameters, stores the model parameters, and stores the estimated 

values.  The process runs in an integrated, fluid motion where the user only needs to input 

the number of iterations that need to be calculated.  Microsoft Excel automatically 

calculates information while the VBA runs the simulation, and the Solver function finds 

the optimal model parameters for estimation. 

Model Creation 

Model creation follows the guidance offered in The Air Force Cost Analysis 

Handbook.  In our study, models are formulated from historical data points with no 

discernible knowledge of the inter-workings of the program.  Within our research, the 

only elements of information available are unit cost and lot cost for production.  Only one 

data point is derived from each set of lot data; the points consist of a lot midpoint unit 

number and an average unit cost per lot.  We calculate the lot midpoint using a heuristic 

for the unit number.  “A lot midpoint is the unit number (not necessarily a whole number) 

that corresponds with the average unit cost for a given lot under the Unit curve 

formulation” (Handbook: 8-22).  Lot midpoints can only be used in the unit cost formula 

of the cost improvement model, which is consistent with our research because production 
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rate adjustments must be based on unit cost methods (Handbook: 8-22, 8-32).  The lot 

midpoint heuristic used is: 

Lot Midpoint =                         (3.3) 

where 

LS = cumulative production number of the first unit in the lot 

LE = cumulative production number of the last unit in the lot 

 

The lot midpoint and average unit cost create the historical data points to find our model 

parameters.  With those data points we use Premium Solver Platform to find the 

statistically correct model parameter for estimation. 

Premium Solver Platform 

Microsoft Excel offers a Solver add-in called Premium Solver Platform.  Solver 

operates as an optimization tool to find the value of parameters within a model that meets 

a goal or condition.  Frontline System states on their website that Premium Solver 

Platform “solves every type and size of problem, using built-in and plug-in Solver 

Engines” (www.solver.com).  Premium Solver Platform is “a unique combination of 

genetic algorithms and classical nonlinear optimization methods” (www.solver.com).  As 

a reminder, our four equations for modeling are: 

   The Production Rate Adjustment Model: C(Q) = T1Q
b
(R/R0)

c
                          (1.1) 

                  The Fixed Cost Model: C(Q) = (F/R) + T1Q
b
                         (1.2) 

The Crawford Unit Cost Model: C(Q) = T1Q
b
                                      (2.2) 

The Production Rate Model: C(Q) = T1Q
b
 R

c
                                 (2.4) 
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Three of our cost improvement models are nonlinear (Equations 1.1, 1.2 and 2.4) 

and require the more robust solver to calculate the model parameters.  More specifically, 

we need to be certain that Solver can calculate the global minimums while avoiding the 

local minimum values.  To combat this problem, Premium Solver Platform developed a 

multi-start function to identify global solutions.  The multi-start function “can be 

automatically run many times from judiciously chosen starting points, and the best 

solution found will be returned as the optimal solution.  […] multi-start methods will 

converge in probability to the globally optimal solution” (www.solver.com).  With the 

use of Premium Solver Platform we calculate the model parameters for each model on 

each set of production costs.   

Solver requires that a condition be optimized to find the model parameters.  We 

chose to calculate the Sum of Squared Error (SSE) for each model fitting the data, and to 

minimize SSE to define the optimum model parameters.  SSE identifies the error for each 

data point, squares the error, and then adds the resulting product to the values of other 

data points.  By choosing different values for the model parameters, the SSE can be 

minimized thus reducing the fitting error.  For the production rate adjustment equation 

(Equation 1.1) cost improvement model we optimize the values of b, c, and T1.  For the 

fixed cost equation, (Equation 1.2) cost improvement model we optimize b, F, and T1.  

The values of T1 and F are not the true Unit one values or fixed costs amount, but rather 

T1 and F are theoretical parameters established to create the best estimating model.  

Solver converged, based on probability, to the optimum value of these model parameters 

in order to minimize SSE.  Premium Solver Platform generates outputs based upon the 

Solver iterations‟ simulated data, delineating the steps of the program.   
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 Limitations 

 Modeling every possible production scenario is impossible and an obvious 

limitation.  We attempt to include all variables affecting costs along with making 

reasonable selections of values for the variables, while heavily relying on the power and 

accuracy of Premium Solver Platform to calculate the correct model parameters.  All 

indicators lead us to believe that the program converges on the best possible solution, but 

we do not have the means to personally test and analyze every model.  Any anomalies 

within the data will be researched and explained in the analysis.  The assumptions for 

accuracy of fit, equal variance, and independence will not be evaluated with our results.  

We focus on the predictive ability of each of the models; testing the assumptions of 

thousands of model iterations is simply not feasible.  We have done our best to create 

sound methodology for our Monte Carlo simulation and model creation, but acknowledge 

that unknown or unrecognized factors can impact the research.   

Model Evaluation with Historical Data 

 The Air Force Cost Analysis Agency provided unit recurring flyaway data for a 

number of aircraft platforms.  Summary information represents data that was collected, 

normalized and analyzed by RAND Corporation.  Any anomalies have been explained 

and removed from the data to identify a cost structure that can be modeled.  The 

summary data provides lot quantity data and average unit costs for each lot.  We will 

model these observations using the same methods mentioned above for our simulated 

data.  We will use lot midpoint and average unit cost data points to run Solver Premium 

Platform and to solve for model parameters.  Future costs to measure the predictive 
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accuracy are unknown, thus we will withhold the data point where a production decrease 

takes place and will use that as the „future‟ data point. 

Measures of Error 

 Mean Percentage Error (MPE) 

 MPE is calculated through the following equation: 

MPE =   * 100                        (3.4) 

We used MPE to measure the fitting error as well as the forecast error.  Each data point‟s 

MPE is calculated separately; the MPE values are then averaged to reach a final value.  

The value illustrates the bias of the model by the positivity or negativity of the final MPE 

value.  A positive value indicates that the model underestimates the data, while a negative 

value signals overestimation.  The fitting error illustrates how well the model fits the 

historical data.  While MPE can be used as an indication of accurate forecasting by the 

model, the MPE does not guarantee that the model will forecast precisely.   

 We also calculate the MPE of the forecast to compare that value to the fitted 

MPE.  Large differences in the value show that even though the model fits the historical 

data well, the model is no indication of future costs.   

Mean Absolute Percentage Error (MAPE) 

 Mean Absolute Percentage Error takes the absolute value of each MPE and sums 

those absolute values.  MAPE reveals the extent that the fit and forecast vary from the 

actual value without taking into account whether the equations overestimate or 

underestimate.  Again, the MAPE fitting the historical data does not guarantee the model 

will provide an accurate forecast, but the MAPE can be used as an indication of the 
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predictive ability of the model.  Measuring the difference between the fit error and the 

forecast error provides insight into the validity of the model and the model‟s ability to 

predict future values.   

 We use SSE, MPE, and MAPE to reveal information about each of the models.  

Evaluating these values with the independent variable values demonstrates how well the 

models are forecasting and which variables affect the individual model‟s ability to 

perform.   

Chapter Summary 

 In this chapter we built upon the literature reviewed in Chapter II to develop our 

methods for evaluating Equations 1.1 and 1.2.  We will be using Monte Carlo simulation 

to create production costs that can then be modeled.  In our Monte Carlo simulation we 

will vary eight different independent variables to create an all-inclusive set of possible 

cost profiles.  Number of lots, lot quantity, cumulative quantity, unit one cost, variable 

learning rate, fixed cost burden, production rate decrease, and noise will all be varied in 

our simulation.   The simulated data will mimic normalized historical data used for cost 

estimating.  For each set of production costs we will model the production rate 

adjustment equation (Equation 1.1) and the fixed cost model (Equation 1.2) using the 

Microsoft Excel add-in Premium Solver Platform.  The model parameters discerned using 

Solver will be implemented to predict a future lot, and the error of that prediction will be 

measured.  Using historical data provided by AFCAA, we intend to verify our findings 

and to determine which equation better predicts future costs.   

 Chapter IV shows the results of our Monte Carlo simulation and the model 

estimation for the simulated and historical data.  We introduce the measures of error 
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results for each simulation to determine which variables affect each model‟s forecast.  

Chapter IV provides a summary of our analysis, while Chapter V highlights the most 

significant aspects of our research and the potential cost analysis policy implications.   
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IV.  Results and Discussion 

 Previous chapters included the purpose of our research, an extensive literature 

review on cost improvement curves, and our methodology for our cost improvement 

models.  In this chapter, we focus on the results of our Monte Carlo simulation, our cost 

improvement model creation, and our model evaluation.  We display a random example 

from each of our simulated production functions and compare individual production 

profiles to historical cost profiles for validity.  Our analysis of the Monte Carlo 

simulation datasets includes measures of error, accuracy plots, statistical analysis, and 

patterns revealed within the models.  Our results illustrate that the production rate cost 

improvement model outperforms the other cost improvement models overall.  Originally 

we hypothesized that Equations 1.1 and 1.2 would furnish better results than would the 

other models, but this did not prove to be true.  For this reason we include the results of 

the Crawford unit cost model and the production rate model when applicable in this 

chapter.  The analysis also demonstrates that fixed cost model produces statistically equal 

forecasts when production cycles possess high fixed costs and suffers losses of efficiency 

when production decreases occur.  We validate the performance of the fixed cost model 

with historical data where the fixed cost model consistently provides more accurate 

estimates than do the other models.  Our evaluation of the cost improvement models 

includes estimations of normalized historical data; the results remain consistent with our 

findings. 
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Monte Carlo Simulation Results 

 Our cost generation functions produce reasonable data for our analysis.  Patterns 

found in historical data provided by the Air Force Cost Analysis Agency fuel our 

simulations as mentioned in Chapter III, substantiating the validity of our results.  The 

following subsections elucidate random examples from each of our cost functions.   

 Production Cost Simulation: Fixed Cost Function 

 The below dataset displayed in Figure 4.1 and Table 4.1 represents a random 

production run from our simulation.  We cannot individually plot each of the thousands 

of dataset simulations from our research, but our example illustrates the basic structure 

evident throughout our research.  The thin black line represents each unit cost throughout 

production, while the thick black line depicts the lot midpoints and the average unit cost 

per lot utilized for model creation.   

 

Figure 4.1: Fixed Cost Production Simulation Example 
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 Figure 4.1 tracks the path of a traditional learning curve production, but breaks 

that pattern in the final lot where the production rate decreases.  The production rate 

decrease triggers the average unit cost for that production lot to increase because each 

unit must shoulder a larger portion of the fixed cost.  The change in the cost represents 

our hypothesized loss of efficiency associated with production decreases.  Appendix A 

manifests this dataset in its entirety.  Table 4.1 presents the value of each input variable 

used in the construction of the model.  The input variable noise is not included in Table 

4.1 because we appended noise to each unit cost at different levels.   

Table 4.1. Fixed Cost Production Simulation Example Input Variables 

Variable  Value 

Number of Lots To Be Modeled 

(History) 

7 

Variable Cost Starting Point $445,579 

Cumulative Units 301 units 

Learning Slope 84% 

Fixed Cost Burden 20% 

Percent Production Decrease 50% 

 

Production Cost Simulation: Cost Function with No Fixed Cost 

 Our research focuses on modeling a production decrease and the inherent loss of 

efficiency when production lines must adjust to unexpected volume variations.  The plot 

of our second cost generating function, Figure 4.2, does not include a fixed cost variable.  

Although Figure 4.2‟s plot does not expose a loss of efficiency, the simulated datasets 

maintain the validity in the evaluation of the cost improvement models.  When we 
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compare the production accuracy from this production model to the fixed cost production 

results, we can illustrate the behavior of each model under varying conditions.   

 

Figure 4.2: Production Simulation Example with No Fixed Cost 

 

Historical Production Cost  

Our fixed cost production closely aligns with the hypothesized patterns described 

in Chapter III, but it is essential that we demonstrate with certainty that our production 

clearly mimics historical patterns.  Utilizing the normalized dataset provided by the Air 

Force Cost Analysis Agency (AFCAA), we can successfully model a program‟s 

production decrease.  The F-15 program suffered production decreases in 1981 and 1982; 

Figure 4.3 shows a plot of the lot midpoints and average unit costs for the program from 

1973 through these production decreases.  The pattern in Figure 4.3 similarly conforms to 

production costs from our simulation where the production decrease induces the average 

unit cost for those respective lots to correspondingly increase.  We cannot be certain of 
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the true extent to which a fixed cost burden existed in the F-15 program at that time, nor 

ascertain the exact cause of the rise in average unit cost, but Figure 4.3 does reveal a 

significant loss of efficiency.  By ensuring that our production datasets mimic patterns 

found in historical programs, we feel confident that the findings can be generalized 

beyond simulated data. 

The lot quantities associated with the F-15 program fall outside of the range of 

our simulated conditions, but by matching the lot quantities we can create cost data that 

almost exactly matches the F-15 scenario.  While Figure 4.3 reveals actual historical data, 

we have also added a simulated cost profile to demonstrate the validity of our Monte 

Carlo simulation.   

 

Figure 4.3: F-15 (1973-1982) Flyaway Production Cost (BY03 Million $’s) Compared to Simulated 

Cost Data 

 Though the profiles do not exactly mimic each other, they demonstrate similar 

cost patterns and the cost data is represented by a 4% mean absolute percentage 
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difference.  Table 4.2 below shows the simulated conditions that created the cost profile 

portrayed above.  Each of the independent variables falls within the range used for our 

simulations shown in Chapter III, thus our simulated data accurately represents historic 

cost data. 

Table 4.2. Simulated conditions Creating Historically Accurate Cost Profile 

Simulated Variable Variable Level 

Number of Lots 10 

Unit 1 Cost (Million $'s) $39 

Variable Learning Rate 94% 

Fixed Cost Burden 15% 

Production Decrease 44% 

 

Independent Variable Simulation Results 

 When implementing Monte Carlo simulation, each of the independent variables 

produces expected values.  One of our simulations for learning curve slope represents a 

triangular distribution with a minimum value of 75 percent, a mode of 85 percent and a 

maximum value of 95 percent.  The resulting simulation of 1,000 iterations produces the 

following results. 
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Figure 4.4:  Learning Curve Distribution from Simulation (1,000 Iterations) 

Distributions for the remaining generated independent variables are displayed in 

Appendix B.  

Model Comparison 

 Production with a Fixed Cost Variable 

We model the fixed cost production simulation example shown above (Figure 4.1) 

with the results from the Crawford unit cost model, production rate model, production 

rate adjustment model, and the fixed cost model.  Table 4.3 and Table 4.4 present the 

simulated production costs and the model results.  Though Table 4.3 and Table 4.4 are 

only one example of the many different production runs we completed and modeled, this 

particular data articulates patterns consistent throughout our simulations and modeling.  

Table 4.3 displays the dollar values from each of the models and Table 4.4 presents the 

percentage error so that the differences among the models can be clearly established. 
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Table 4.3. Model Comparison Example (Constant Year $’s) 

Lot Lot 
Midpoint 

Actual Avg. 
Unit Cost 

Crawford Unit 
Cost Model 

Production 
Rate Model 

Production 
Rate 
Adjustment 
Model 

Fixed Cost 
Model 

1 11 $346,746  $345,194  $344,792  $344,910  $348,211  

2 49 $241,971  $243,422  $247,087  $247,206  $235,854  

3 86 $219,049  $213,162  $217,931  $218,102  $220,927  

4 125 $200,380  $195,175  $199,462  $199,417  $196,864  

5 167 $187,576  $182,304  $186,615  $186,512  $186,173  

6 211 $176,854  $172,642  $177,118  $177,012  $180,962  

7 256 $172,069  $165,033  $169,588  $169,472  $176,315  

8 (Estimated 
Lot) 289 $227,575  $160,271  $172,406  $232,081  $357,259  

 

Table 4.4. Model Comparison Example: Fit and Forecast % Error 

Lot Lot Midpoint Crawford Unit 
Cost Model 

Production Rate 
Model 

Production Rate 
Adjustment 
Model 

Fixed Cost 
Model 

1 11 0.45% 0.56% 0.53% -0.42% 

2 49 -0.60% -2.11% -2.16% 2.53% 

3 86 2.69% 0.51% 0.43% -0.86% 

4 125 2.60% 0.46% 0.48% 1.75% 

5 167 2.81% 0.51% 0.57% 0.75% 

6 211 2.38% -0.15% -0.09% -2.32% 

7 256 4.09% 1.44% 1.51% -2.47% 

8 (Estimated 
Lot) 289 29.57% 24.24% -1.98% -56.99% 

 

In this example the production rate adjustment model predicts future cost more 

accurately than does any of the other models.  Throughout our analysis each equation 

proves to possess forecasting capabilities; each equation predicts better than other models 

on specific generated iterations, but some models prove to produce more consistent 

forecasts.   
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 Model Fit Accuracy 

 Fit accuracy does not appear to significantly vary between the models.  Table 4.4 

establishes that each of the models fits the data for lots 1 through 7 extremely well, and 

that each of the simulations‟ iterations under the different assumptions evidences the 

same results.  Plots depicting the cumulative percentages of model accuracy for the 

production rate adjustment equation and fixed cost equation for the first set of simulation 

assumptions (triangular distribution learning slope 75.0 percent to 95.0 percent and noise 

continuous, uniform distribution -5.0 percent to 15.0 percent) verify that each of the 

equations fits the data well.  Plots for the Crawford unit cost model and the production 

rate model can be viewed in Appendix C.  The Crawford unit cost model and the 

production rate model produce similar results.  Figure 4.5 and other plots of cumulative 

percentages illustrate that at any chosen point along the y-axis, we can be a certain 

percentage confident (y-axis value) that the model error will be less than or equal to the 

value on the x-axis.  When comparing the models, the model with a curve appearing 

further to the left at the higher cumulative percentage adduces a lower error from actual 

values.  Thus, in Figure 4.5 the models fit the data relatively closely, but the fixed cost 

model offers us a higher confidence that the model will provide a lower fit error. 
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Figure 4.5: Fixed Cost and Production Rate Adjustment Model Fit Absolute Mean % Errors for 

Fixed Cost Production 

The cumulative percentages for fit error confirm that each of the models fit the 

data extremely well.  Statistically, a test of equal means for the absolute mean percentage 

fit error establishes that the means are not equal, but the cumulative chart verifies that the 

models all fit the data well.  Table 4.4 discloses the cumulative percentages of the four 

models.  When translated, the percentages mean that we can be confident by a certain 

defined percentage that the model will return a fit error equal to or less than that 

identified fit error.  For example, for the Crawford unit cost model, we can be 75 percent 

confident that the fit error for any model will be less than or equal to 2.0 percent under 

these simulated conditions.  
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Table 4.5. Fit Absolute Mean % Error Cumulative Percentages for Production with Fixed Costs 

Cumulative 
Percentage 

Crawford Unit 
Cost Model 

Production Rate 
Model 

Production Rate 
Adjustment Model 

Fixed Cost 
Model 

25% 1% 1% 1% 1% 

50% 1% 1% 1% 2% 

75% 2% 2% 2% 4% 

95% 26% 14% 14% 12% 

 

The production rate model and the production rate adjustment model have the 

same fit errors because they fit data applying the same model parameters.  The slight 

deviation shown in Table 4.4 stems from very small differences in the model parameters 

ascertained by Solver (rounding).  Running each of the equations separately with Solver 

to ensure the program identifies the same parameters, the equations perform properly.  

We find that even though there are slight differences, the means of each of the fit errors 

are statistically equal.  The differences between the two models can be verified during 

estimation where the production rate adjustment model adds the variable to account for 

changes in lot quantities.   

 Under different assumptions, the fit errors yield similar results.  We do not 

uncover any significant differences in fit error when the independent variables vary; the 

fit errors remain consistently low.  Figure 4.8 evinces the fixed cost model fit absolute 

mean percentage errors for our production simulation without a fixed cost variable; 

Figure 4.9 illustrates the fit error for the production rate adjustment model.  This 

production simulation differs only by the exclusion of the fixed cost variable; all other 

independent variables are simulated with the same ranges. 
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Figure 4.6: Fixed Cost and Production Rate Adjustment Model Fit Absolute Mean % Errors For 

Production without Fixed Costs 

The plots appear almost identical to the fit error for the production simulation 

with a fixed cost variable because the major cost changes do not surface until the 

production decrease occurs in the estimated lot.  The cumulative percentages for the fit 

absolute mean percentage errors for each of the four models are the focus subject of 

Table 4.6.   

Table 4.6. Fit Absolute Mean % Error Cumulative Percentages for Production without Fixed Costs 

Cumulative 
Percentage 

Crawford Unit Cost 
Model 

Production Rate 
Model 

Production Rate 
Adjustment 
Model 

Fixed Cost 
Model 

25% 1% 1% 1% 2% 

50% 1% 1% 1% 4% 

75% 1% 2% 2% 7% 

95% 57% 16% 16% 17% 
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The fixed cost model yields a slightly higher fit error than do the other three models until 

the 95% cumulative percentage where it demonstrates a significantly better fit than do the 

other models.  Crawford‟s unit cost model strictly mimics the cost production function 

we simulate except for the error term.   As a result, we expect a low fit error. 

The fit errors for each of the models prove to be very low, and each of the models 

performs equally well.  The major differences among the models are evidenced during 

forecasting where we discover truly significant differences among the models. 

Model Forecasting Error 

We measure the mean percentage error for each of the model forecasts to 

determine if any of the models demonstrates a consistent bias to over or underestimate 

future production cost.  Table 4.7 catalogs the results for each of the models from the 

production simulation with a fixed cost component. 

 

Table 4.7.  Model Mean Percentage Error for the Production with Fixed Cost 

  
Crawford Unit Cost 
Model 

Production Rate 
Model 

Production Rate 
Adjustment Model Fixed Cost Model 

Forecast MPE 36% 19% -209% -45% 

 

Table 4.7 provides a snapshot of each of the models to determine whether or not the 

individual model tends to over or underestimate production cost.  The value shown in the 

table is an average, and we discover that the value can be influenced by extremely large 

values.  Obviously, as a number based on 1,000 observations, an outlier will prove to 

exhibit less influence.  Table 4.7 reveals that the Crawford unit cost model and the 
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production rate model tend to underestimate, while the production rate adjustment model 

and the fixed cost model tend to overestimate.  

 Our next step is to measure the forecast mean absolute percentage error.  Just as 

with the model fit errors, we look at the cumulative percentages to determine our 

confidence levels in individual models.  Table 4.8 presents the absolute percentage errors 

for all four models when forecasting the production cycle including a fixed cost 

component.  The corresponding cumulative percentage histogram plots can be seen in 

Appendix D. 

Table 4.8. Forecast Absolute Mean % Error Cumulative Percentages for Production With Fixed 

Costs 

Cumulative 
Percentage 

Crawford Unit 
Cost Model 

Production Rate 
Model 

Production Rate 
Adjustment Model 

Fixed Cost 
Model 

25% 18% 9% 20% 17% 

50% 33% 18% 54% 33% 

75% 55% 36% 161% 65% 

95% 69% 57% 861% 154% 

     

 

Each model presents data points that appear to be outliers.  For example, with the 

production rate model, we find a model with a fit absolute mean percentage error of 28 

percent and a corresponding forecast absolute mean percentage error of 152 percent.  

This data point proves to be the largest for the production rate model by approximately 

50 percent.  To test the effects on the cumulative percentages, we remove this data point 

and recalculate the percentages.  The resulting cumulative percentages do not change 

from 9 percent, 18 percent, and 36 percent.  So, even though each of the models produces 

some estimates that appear to be outliers, those values provide minimal, if any, impact on 
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our overall evaluations of the models.  We do not remove any apparent outliers because 

the points do not affect the overall results, and Solver finds the apparent outlier models to 

best fit the generated data. 

Based on the forecast errors for the production simulation with a fixed cost 

component, the production rate model outperforms the other three models.  Using our 

second cost production function, we discover similar results.  Table 4.9 provides the 

mean percentage error for each of the models to measure any bias across all estimates.  

Table 4.10 shows the forecast error cumulative percentages for each of the models when 

the production simulation does not include a fixed cost variable.  Because the production 

rate model so closely mirrors the Crawford unit cost model, except for the Noise variable, 

we expect the Crawford model to outperform the other models.  We use the Crawford 

model as a check on our simulation and as a comparison tool for our other models.  Table 

4.8 shows that the Crawford model slightly underestimates cost while each of the other 

models drastically overestimates cost.   

Table 4.9. Model Mean Percentage Error For Production without Fixed Cost 

  
Crawford Unit Cost 
Model 

Production Rate 
Model 

Production Rate 
Adjustment Model 

Fixed Cost 
Model 

Estimate MPE 7% -20% -292% -152% 
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Table 4.10. Forecast Mean Absolute  % Error Cumulative Percentages for Production 

without Fixed Costs 

Cumulative 
Percentage 

Crawford Unit Cost 
Model 

Production Rate 
Model 

Production Rate 
Adjustment Model 

Fixed Cost 
Model 

25% 1% 5% 34% 49% 

50% 1% 13% 93% 109% 

75% 2% 29% 212% 260% 

95% 74% 60% 814% 392% 

 

 As expected, the Crawford unit cost model produces accurate cost estimates.  The 

production rate model produces very consistent results demonstrating similar accuracy 

with both cost production functions.  The production rate adjustment model and fixed 

cost model do not predict cost accurately with this function.  Each of these models 

hypothetically accounts for changes in the normal production pattern, and this cost 

function does not create changes.  These two models should not be used if production 

remains consistent because they will model aspects of production that are not present and 

will thus create inaccurate forecasts.   

 Model Performance under Differing Simulated Conditions 

 Monte Carlo simulation allows us to vary the assumptions of our production cost 

profiles to evaluate each of the model‟s reaction, if any, to varying conditions.  We vary 

the learning curve slope as well as the noise distribution to simulate different production 

costs, neither of which produces results different from those previously presented.   

Overall, the production rate model outperforms the other models.  This does not 

hold true when we isolate the variables and the fixed cost burden, nor when production 

decreases.  We notice that even though the production rate model appears to forecast 
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better then each of the other models, production with a high fixed cost variable causes the 

fixed cost model to forecast equally well and even considerably better under some 

circumstances.  As a reminder, our fixed cost variable captures the inefficiency that can 

be gained when production faces an unplanned decrease in the number of units produced 

in a lot.  The inefficiencies can include fewer units to absorb high fixed costs, penalties 

from suppliers for reducing order quantities, overhead associated with a production plant, 

costs associated with re-tooling the production line, labor costs associated with re-tooling 

the production line, and loss of learning because the labor force must adjust to the new 

conditions.  We cannot simulate each of these possible scenarios individually, so we 

capture the related costs in our fixed cost variable.  This variable affects both the 

production costs and the model‟s performance. 

 Table 4.11 displays the forecast absolute mean percentage error cumulative 

percentages for production with a fixed cost burden of 40 percent, the highest fixed cost 

burden we simulate. 

Table 4.11. Forecast Absolute Mean % Error Cumulative Percentages for Production with a 40% 

Fixed Cost Burden 

Cumulative 
Percentage 

Crawford Unit 
Cost Model 

Production Rate 
Model 

Production Rate 
Adjustment Model 

Fixed Cost 
Model 

25% 21% 11% 24% 9% 

50% 37% 23% 59% 20% 

75% 62% 45% 169% 35% 

95% 69% 60% 832% 58% 

 

The data display in Table 4.11 substantiates that at 25 percent, 50 percent, and 75 

percent cumulative percentages, we can be confident that the fixed cost model will 



www.manaraa.com

68 
 

generate a more accurate forecast than does any other model.  In fact, further simulation 

reveals that a fixed cost burden of 33 percent is the infliction point between the fixed cost 

model and the production rate model.  The production rate model will produce more 

accurate estimates when the fixed cost burden falls below 33 percent, and the fixed cost 

model creates more accurate estimates when fixed costs exceed 33 percent.  Analysis 

shows that the MAPE of the fixed model is negatively correlated with fixed cost burden 

at a level of -.5.  This value means that as fixed cost rises, the MAPE will become smaller 

(the model becomes more accurate).  The Crawford unit cost model and the production 

rate model show a slight positive correlation to fixed cost, .3 and .2 respectively; each of 

these models demonstrates less accuracy as fixed costs rise.  The production rate 

adjustment model did not show any correlation to the fixed cost variable.   

When we look even further into the simulated conditions, we notice that the 

amount of production decrease also affects which model establishes the most accurate 

estimations. 

Table 4.12. Forecast Absolute Mean % Error Cumulative Percentages for Production with a 40% 

Fixed Cost Burden and A 50% Production Decrease 

  Model Error 

Cumulative 
Percentage 

Crawford Unit Cost 
Model 

Production Rate 
Model 

Production Rate 
Adjustment Model Fixed Cost Model 

25% 35% 14% 19% 12% 

50% 38% 24 % 68% 25% 

75% 41% 33% 178% 34% 

95% 46% 43% 845% 42% 
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Modeling Historical Data 

 We model four sets of data provided by the AFCAA.  As previously discussed, 

the data has been normalized by RAND to return the dollar figures to base year and to 

remove any anomalies that should not be modeled as pattern.  In each of these four sets of 

data, the respective program suffers a production decrease resulting in an increase to the 

average unit cost for the next production lot.  The programs where we observed this 

pattern are the F-15 program, the F-16 program, and the F-18 program.  None of the 

production decreases come at the end of the production life cycle; the decreases occur 

within the first 10 years of the program.  We model the F-15 twice having observed that 

the program suffers a minor production decrease, which is then followed the next year by 

a significantly larger decrease in production.  Using the small decrease in production 

during the model fit provides us with information about how the models react to the 

changes and then forecast the changes to follow in the next year.  Each of the historical 

datasets is displayed in Appendix G. 

 Modeling historical data verifies our findings from the simulated data.  Most 

importantly, this modeling certifies that the fixed cost model outperforms any of the other 

models overall.  We anticipate this result; when these military aircraft production 

programs suffer sudden yield decreases, there are major losses of efficiency that cause 

average unit costs to increase.  The production rate model also performs well with 

estimation results quite similar to the fixed cost model.  Table 4.13 exhibits the 

percentage error for each of the models and reveals that the production rate adjustment 

model is the only model manifesting a significant bias.  The resultant negative values 

mean that the model tends to overestimate consistently across each of the datasets.  No 
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other model produces an overwhelming bias in any direction as can be seen by the 

averages at the bottom of each column. 

Table 4.13. Model Percentage Error for Each Historical Dataset 

  
Crawford 
Model 

Production Rate 
Model 

Production Rate 
Adjustment Model 

Fixed Cost 
Model 

F-15 -1% 11% -36% 11% 

F-15(2) 25% 9% 19% -1% 

F-16 15% 9% -80% -11% 

F-18 -16% -21% -113% -17% 

Average 6% 2% -53% -4% 

 

 When looking at the absolute percentage error for each of the models, the fixed 

cost model does not outperform the other models in every instance, but it does 

outperform the other models overall.  While the Crawford unit cost model and the 

production rate model do provide lower errors at times, the fixed cost model establishes a 

lower average across all four datasets.  The averages shown at the bottom of Table 4.14 

indicate how each of the models estimates the historical data.   

Table 4.14. Model Absolute Percentage Error for Each Historical Dataset 

  
Crawford 
Model 

Production Rate 
Model 

Production Rate 
Adjustment Model 

Fixed Cost 
Model 

F-15 1% 11% 36% 11% 

F-15(2) 25% 9% 19% 1% 

F-16 15% 9% 80% 11% 

F-18 16% 21% 113% 17% 

Average  14% 12% 62% 10% 

 

 Although these results are only snapshots of a couple of programs, the historical 

patterns and the model results match the findings from our simulated data.  When a 

program suffers a production decrease that causes average unit cost to increase, the fixed 
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cost model provides more accurate estimates than do any of the other four models in our 

research.  We are aware that every program contains specific attributes and cost drivers 

that might only be found through a grassroots cost analysis, but our research conceivably 

can provide some insight into the behaviors of cost with a production decrease. 

Chapter Summary 

 Our Monte Carlo simulation for production costs closely resembles patterns found 

within historical data.  While each of the cost improvement models fits the data 

extremely well, the forecast errors greatly differ among the models.  Throughout all of 

the simulations‟ conditions, the production rate model forecasts with the least error, and 

thus outperforms other cost improvement models.  When programs suffer from high fixed 

costs, the fixed cost model captures the inefficiencies with production decreases and 

forecasts equally as well as the production rate model.  Though the fixed cost model 

appears to forecast slightly better for a program with high losses of efficiency, 

statistically the absolute mean percentage forecast errors are equal for both models.  The 

historical datasets validate our findings and actually reveal that the fixed cost model 

outperforms each of the other models.  In Chapter V we discuss the strengths, limitations, 

policy implications, and possible future research based upon our research. 
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V.  Conclusions 

 Chapter V first focuses on the strengths of our research; we cover the highlights 

from Chapter IV and the most essential takeaways.  Second, we look at the limitations of 

our research.  Though we identified our limitations in Chapter I, we feel that we need to 

revisit these limitations due to their significance to the results of our research.  Third, we 

discuss the policy implications of our research followed by possible future research based 

upon our findings.   

Strengths 

 Our main focus in our research is to evaluate cost improvement models and 

challenge the status quo of models used in estimating.  In an environment of restricted 

budgets, short deadlines, and production decreases, coupled with increased pressure to 

produce accurate estimates, the introduction of a fixed cost model offers opportunities for 

more accurate estimates under certain program conditions.  When a program suffers a 

production decrease and a subsequent lost of efficiency, the fixed cost model provides 

more accurate estimates than do other models.  The loss of efficiency can be due to high 

fixed costs or changes in the production line, and that impediment results in higher 

average unit cost for the reduced production lot.  Based on our analysis of historical data, 

loss of efficiency took place within past programs and estimates could have benefited 

from utilization of the fixed cost model.  We also clearly illustrate that over the entire 

range of possible programs and cost profiles, the production rate model provides the most 

accurate estimates.  We reach these conclusions through thousands of iterations of 

possible cost profiles and by altering variables affecting cost for these iterations.   
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 We built our research on a solid foundation of academics that scrutinized similar 

topics. Our literature review discusses in depth the works of other authors who explored 

cost improvement curves, and we use that research as a foundation for our methodology.  

The confidence in our results also stems from the thoroughness of our Monte Carlo 

simulation and our ability to create a wide range of possible production cost patterns.  

Varying independent variables through thousands of possible combinations creates an 

accurate depiction of how each of the models estimates.  Isolating changes in the 

independent variables allows us to detect situations where the fixed cost model furnishes 

more accurate estimates than do the other models.  We hypothesized that during a 

production decrease with a large loss of efficiency, the fixed cost model would 

outperform other models; our analysis proves this to be true.  By offering more insight 

into cost improvement modeling, we hope that cost analysts are able to dispense more 

timely and accurate forecasts to aid the defense acquisition system in delivering assets to 

the warfighter. 

Limitations 

 Though we are confident that our Monte Carlo simulation covers a wide range of 

potential cost profiles, we cannot possibly simulate every practicable condition.  We feel 

that we have generalized the simulation to focus on the more common cost drivers, but 

other exogenous factors can engender changes in cost and our simulation does not deal 

with these inconsistencies.  We assume that our dataset has been normalized so that all 

inconsistencies have been eliminated, but in reality each program exhibits unforeseen 

uniqueness. 
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 We are also limited by the actuality that we cannot evaluate every potential cost 

improvement model available to cost analysts.  There could be circumstances where 

another model outperforms our models, but we chose to restrict our research due to the 

infeasibility of evaluating every model available.   

Policy Implications 

We hope to enhance materials such as The Air Force Cost Analysis Handbook 

such that they furnish more specific direction to cost estimators.  The flexibility within 

resources forces analysts to explore available methods and discover the most appropriate 

models for their respective programs, but sometimes the expansive options impede 

discovery.  Searching all possible avenues for cost estimation takes time not often 

realistic in these pressurized, time-conscious situations.  Our research acts as a more 

accurate „guide‟ for costs analysts.  While other cost improvement models should not be 

discounted early in the process, our research identifies the validity of the fixed cost model 

and the need for the model‟s inclusion in common practice.  Such is the case especially 

when programs face reductions as the F-22 program currently faces.  Instructional 

materials presenting the Crawford unit cost model, the production rate model, and the 

production rate adjustment model need to also include the fixed cost model.  We have 

constructed a foundation elucidating circumstances where the fixed cost model proves 

most useful; dissemination of that information is essential.   

Further Research 

 More intensive examination should be done regarding application of the fixed 

cost model.  First, the model needs to be explored with specific datasets to check the 

statistical characteristics of the model.  Our research did not include statistical validation 
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of the model due to the voluminous number of different datasets we modeled.  In order to 

further the validation of the model, statistical characteristics should be studied.  Our 

research explores „at point‟ estimates with the fixed cost model, but a more in-depth 

analysis of the model should target the behavior of confidence intervals.   

 Further Research could direct efforts toward discovering a more accurate cost 

improvement model.  As conditions change and programs face new challenges, the 

current cost improvement models may not be sufficient.  None of the models we evaluate 

present an overwhelming accuracy with either the simulated or the historical data.  Thus, 

perhaps a newly formulated model would replicate and project cost more accurately.  Our 

research and further research should re-examine cost analysis methodologies and strive to 

improve current methods of cost estimating and to provide more complete and accurate 

estimates.   
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Appendix A: Fixed Cost Production Function Simulation Example Dataset 

Table A.1.  Fixed Cost Production Function Simulation Example 

Lot Number 
Lot 
Quantity 

Cum 
Quantity 

Lot 
Midpoint 

Actual Lot Cost 
($) 

 Lot Average Unit Cost 
($) 

1 32 32 11.08      11,095,882                                346,746  

2 36 68 48.94          8,710,967                                241,971  

3 37 105 86.06          8,104,799                                219,049  

4 41 146 125.20          8,215,572                                200,380  

5 43 189 167.34          8,065,774                                187,576  

6 44 233 210.95          7,781,591                                176,854  

7 45 278 255.53          7,743,111                               172,069  

8  
(Estimated 

Lot) 22 300 289.40          5,006,658                               227,575  
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Appendix B: Independent Variable Distributions from Monte Carlo Simulation 

  

 

Figure B.1. Fixed Cost Burden Distribution From Simulation (1,000 Iterations) 

 

 

Figure B.2: Production Decrease Distribution From Simulation (1,000 iterations) 
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Figure B.3:  Noise Distribution from A Single Production Simulation 

 

Figure B.4:  Unit One Cost Distribution from Simulation (1,000 Iterations) 
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Figure B.5: Number of Lots Modeled From Simulation (1,000 Iterations) 

 

 

Figure B.6: Cumulative Quantities From Simulation (1,000 Iterations) 
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Appendix C: Model Fit Absolute Mean % Error Plots From Production with Fixed 

Cost Variable 

 

 

Figure C.1: Production Rate Model Fit Absolute Mean % Error For Production With Fixed 

Cost Variable 

 

Figure C.2: Crawford Unit Cost Model Fit Absolute Mean % Error For Production With 

Fixed Cost Variable 
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Appendix D: Model Fit Absolute Mean % Error Plots From Production without 

Fixed Cost Variable 

 

Figure D.1: Production Rate Model Fit Absolute Mean % Error From Production Without 

Fixed Cost Variable 

 

 

Figure D.2: Crawford Unit Cost Model Fit Absolute Mean % Error From Production 

Without Fixed Cost Variable 
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Appendix E: Model Forecast Absolute Mean % Error Plots From Production with 

Fixed Cost Variable 

 

 

Figure E.1: Crawford Unit Cost Model Forecast Absolute Mean % Error From Production 

With Fixed Cost Variable 

 

 

Figure E.2: Production Rate Model Forecast Absolute Mean % Error From Production 

With Fixed Cost Variable 
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Figure E.3: Production Rate Adjustment Model Forecast Absolute Mean % Error From 

Production With Fixed Cost Variable 

 

 

Figure E.4: Fixed Cost Model Forecast Absolute Mean % Error From Production With 

Fixed Cost Variable 
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Appendix F: Model Forecast Absolute Mean % Error Plots From Production 

without Fixed Cost Variable 

 

 

Figure F.1: Crawford Unit Cost Model Forecast Absolute Mean % Error From Production 

Without Fixed Cost Variable 

 

Figure F.2: Production Rate Model Forecast Absolute Mean % Error From Production 

Without Fixed Cost Variable 
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Figure F.3: Production Rate Adjustment Model Forecast Absolute Mean % Error From 

Production Without Fixed Cost Variable 

 

 

Figure F.4: Fixed Cost Model Forecast Absolute Mean % Error From Production Without 

Fixed Cost Variable 
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Appendix G: Historical Datasets 

Table G.1. F-15 Dataset 

Year Lot Quantity First Unit  Last Unit 
Lot 
Midpoint 

Lot Average 
Unit Cost 
(BY03 Million 
$'s) 

1973 30 1 30 11.9 40.0 

1974 62 31 92 58.7 30.6 

1975 72 93 164 126.8 26.8 

1976 153 165 317 236.8 26.8 

1977 108 318 425 370.2 25.5 

1978 97 426 522 473.2 27.5 

1979 91 523 613 567.4 25.1 

1980 98 614 711 662.0 24.8 

1981 

Estimated 
Lot 85 712 796 753.7 27.9 
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Table G.2. F-15 Dataset (2) 

Year Lot Quantity First Unit  Last Unit 
Lot 
Midpoint 

Lot Average 
Unit Cost 
(BY03 Million 
$'s) 

1973 30 1 30 11.9 40.0 

1974 62 31 92 58.7 30.6 

1975 72 93 164 126.8 26.8 

1976 153 165 317 236.8 26.8 

1977 108 318 425 370.2 25.5 

1978 97 426 522 473.2 27.5 

1979 91 523 613 567.4 25.1 

1980 98 614 711 662.0 24.8 

1981 85 712 796 753.7 27.9 

1982 

Estimated 
Lot 38 797 834 815.5 32.4 

 

Table G.3. F-16 Dataset 

Year 
Lot 

Quantity 
First Unit  Last Unit Lot Midpoint 

Lot Average 
Unit Cost (BY03 

Million $'s) 

1978 202 1 202 76 16.2 

1979 250 203 452 319 12.3 

1980 287 453 739 590 12.6 

1981 276 740 1015 874 12.7 

1982 242 1016 1257 1134 13.2 

1983 168 1258 1425 1341 14.3 
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Table G.4. F-18 Dataset 

Year 
Lot 

Quantity 
First Unit  Last Unit Lot Midpoint 

Lot Average 
Unit Cost (BY03 

Million $'s) 

1979 9 1 9 4 89.2 

1980 25 10 34 20 60.9 

1981 79 35 113 69 38.5 

1982 87 114 200 155 33.5 

1983 125 201 325 260 28.8 

1984 134 326 459 390 26.2 

1985 145 460 604 530 23.4 

1986 138 605 742 672 22.6 

1987 109 743 851 796 22.4 
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